现在需要采用的三大数据连续性技术
树的常见特性 平衡二叉树,一般是用平衡因子差值决定并通过旋转来实现,左右子树树高差不超过1,那么和红黑树比较它是严格的平衡二叉树,平衡条件非常严格(树高差只有1),只要插入或删除不满足上面的条件就要通过旋转来保持平衡。由于旋转是非常耗费时间的。所以 AVL 树适用于插入/删除次数比较少,但查找多的场景。 红黑树 通过对从根节点到叶子节点路径上各个节点的颜色进行约束,确保没有一条路径会比其他路径长2倍,因而是近似平衡的。所以相对于严格要求平衡的AVL树来说,它的旋转保持平衡次数较少。适合,查找少,插入/删除次数多的场景。(现在部分场景使用跳表来替换红黑树,可搜索“为啥 redis 使用跳表(skiplist)而不是使用 red-black?”) B/B+ 树 多路查找树,出度高,磁盘IO低,一般用于数据库系统中。
B + 树与红黑树的比较 (一)磁盘 IO 次数 B+ 树一个节点可以存储多个元素,相对于红黑树的树高更低,磁盘 IO 次数更少。 (二)磁盘预读特性 为了减少磁盘 I/O 操作,磁盘往往不是严格按需读取,而是每次都会预读。预读过程中,磁盘进行顺序读取,顺序读取不需要进行磁盘寻道。每次会读取页的整数倍。 操作系统一般将内存和磁盘分割成固定大小的块,每一块称为一页,内存与磁盘以页为单位交换数据。数据库系统将索引的一个节点的大小设置为页的大小,使得一次 I/O 就能完全载入一个节点。
B + 树与 B 树的比较 B+ 树的内部节点并没有指向关键字具体信息的指针。因此其内部节点相对 B 树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。 B+ 树的查询效率更加稳定 由于非叶子结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。 B+ 树元素遍历效率高 B 树在提高了磁盘IO性能的同时并没有解决元素遍历的效率低下的问题。正是为了解决这个问题,B+树应运而生。B+树只要遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而 B 树不支持这样的操作(或者说效率太低)。
MySQL 索引
B+ Tree 索引
InnoDB 的 B+Tree 索引分为主索引和辅助索引。主索引的叶子节点 data 域记录着完整的数据记录,这种索引方式被称为聚簇索引。因为无法把数据行存放在两个不同的地方,所以一个表只能有一个聚簇索引。 (编辑:信阳站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |